

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 16 (2005) 949-952

Tetrahedron: Asymmetry

Efficient preparation of (1'R)-(-)-1-(2'-hydroxy-1'-phenylethyl) piperidin-2-one: synthesis of (2'S,3R)-(+)-stenusine

Alejandro Castro-C.,^a Jorge Juárez-P.,^{a,*} Dino Gnecco,^a Joel L. Terán,^a Alberto Galindo,^a Sylvain Bernès^a and Raúl G. Enríquez^b

^aCentro de Química, Instituto de Ciencias, BUAP, Lab. Síntesis Orgánica, Edificio 194, Complejo de Ciencias, Ciudad Universitaria, 72570 Puebla, Pue., Mexico ^bInstituto de Química, UNAM, Cd. Universitaria, 04510 Mexico, D.F., Mexico

Received 12 October 2004; revised 5 January 2005; accepted 18 January 2005

Abstract—An efficient oxidation of (2'R)-(-)-2'-phenyl-2'-(piperidin-1-yl)ethanol **2** with bromine to generate the corresponding piperidin-2-one **3** in 96% is described. In addition, starting from **3**, (2'S,3R)-(+)-stenusine **8** was synthesized in 70% overall yield. The X-ray analysis of piperidine **6** HCl is also reported. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Piperidine alkaloids and synthetic analogues are the focus of great interest in the pharmaceutical industry because they exhibit an extensive range of biological activities.¹ As a consequence, the development of new methods for the enantioselective synthesis of piperidine derivatives by stereoselective introduction of substituents at the carbon positions of the heterocycle constitutes an area of current interest.² In this context, chiral piperidin-2-ones are versatile synthetic building blocks for the asymmetric synthesis of this class of compounds.³

In particular, Micouin et al.⁴ reported a preparation of the piperidin-2-one **3** by reduction of oxazololactam **1** following a procedure described by Romo and Meyers⁵ for a similar lactam. In addition, starting from **3** an asymmetric synthesis of natural stenusine **8** was carried out.

Herein, we report an efficient oxidation of compound 2^6 with bromine in the presence of acetic acid⁷ to give piperidin-2-one **3** in 96% yield (Scheme 1).

Scheme 1.

2. Results and discussion

Herein we found the conditions for the oxidation at C-2 of 2 with a solution of bromine in acetic acid. The best result was obtained in the conditions described in Table 1 (entry 3).

However, the oxidation of (1'S)-(-)-1-(1'-phenyl-ethyl)piperidine under the same conditions afforded the corresponding piperidin-2-one in 50% yield.

The high yield observed for the oxidation of 2 could be explained via a mechanism, which involves the

^{*}Corresponding author. Tel.: +52 222 2453277; fax: +52 222 2295551; e-mail: rijuarez@siu.buap.mx

^{0957-4166/}\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2005.01.023

950

	Ta	ble	1.
--	----	-----	----

Entry	Br ₂ /AcOH (mmol/mL)	Solution (1 M)	Temperature (°C)	Time (h)	2 Yield (%)
1	2.0/6	K ₂ CO ₃	90	1	65
2	2.6/8	K ₂ CO ₃	90	1	80
3	3.2/10	NaOH	90	1	96

participation of the hydroxyl function of 2 in the ring close of I to give intermediate II.

This intermediate in the presence of bromine gives **III**, which generates the hexahydro-oxazolo[3,2-*a*]pyridin-4-ylium **IV**. Finally, compound **IV** under basic conditions provides **V**, which can be rearranged to give lactam $3^{8,9}$ (Scheme 2).

Finally, alkylation of 3 with (S)-(+)-1-bromo-2-methylbutane in the presence of HMPA and sec-BuLi gave a diastereoisomeric mixture with a ratio 9:1 (determined by NMR). Purification of this mixture by flash chromatography afforded 4 in 80% yield. The excellent diastereoselectivity is in agreement with that previously reported.⁴ Then, reduction of the carbonyl function with Red-Al¹⁰ afforded 5 in quantitative yield. Hydrogenolysis of 5 furnished (2'S,3R)-(+)-3-(2'-methylbutyl)piperidine hydrochloride 6.HCl in 95% yield. This compound was crystallized from ethyl acetate and its single-crystal X-ray analysis performed in order to determine the configuration at C-3 (Fig. 1). Finally, starting from 6 HCl and following the methodology described by Micouin et al.⁴ the synthesis of stenusine (2'S,3R)-(+)-l-ethyl-3-(2-methylbutyl)piperidine 8 was achieved in two steps in 96% yield. Compound 8 is identical to the product described by Enders et al.¹¹ ($[\alpha]_D$, ¹H, and ¹³C NMR) (Scheme 3). Some authors¹² have reported the synthesis of the four diastereoisomers of stenusine in different ratios; however, this methodology is only useful for preparing one of them in high yield. Taking into account that (S)-phenylglycinol is also commercially available, this procedure can provide access to (2S,3S)-stenusine.

3. Conclusion

In conclusion, the results reported herein show that oxidation of (2'R)-(-)-2'-phenyl-2''-(piperidin-1-yl)ethanol

Figure 1. ORTEP view of the crystal structure of compound 6·HCl. Displacement ellipsoids for non-H atoms are drawn at the 20% probability level.

Scheme 3. Reagents and conditions: (i) *sec*-BuLi, THF, HMPA, -78 °C, then (*S*)-(+)-1-bromo-2-methylbutane, 90%; (ii) Red-Al, THF, 0 °C, 100%; (iii) H₂, Pd–C 10%, MeOH, HCl, 95%; (iv) CH₃COCl, NEt₃, refluxing CHCl₃, 96%; (v) Red-Al, THF, 0 °C, 100%.

2 with bromine in the presence of acetic acid is a convenient method to prepare (1'R)-(-)-1-(2'-hydroxy-1'-phenylethyl)piperidin-2-one 3 in high yield.

Furthermore to the best of our knowledge, this is the first time intermediates 4, 5, 6 HCl, and 7 have been characterized fully.

Scheme 2.

4. Experimental

4.1. General

¹H NMR spectra were recorded at 400 MHz, and ¹³C NMR spectra at 100 MHz (tetramethylsilane as internal reference). IR spectra were obtained with a Nicolet FT-IR Magna 750 spectrometer. Optical rotations were determined at room temperature with a Perkin–Elmer 341 polarimeter, using a 1 dm cell with a total volume of 1 mL and are referenced to the D-line of sodium. Mass spectra were recorded with a JEOL JEM-AX505HA instrument at a voltage of 70 eV.

4.2. Oxidation of compound 2

To a solution of **2** (1.0 g, 4.87 mmol) in acetic acid (5.0 mL, 80%) at 0 °C was added dropwise a solution of bromine (15.60 mmol) in acetic acid (5.0 mL). The mixture was stirred for 20 min and water (30 mL) then added and stirred for 3 h. Afterwards, the reaction was treated with a solution of sodium hydroxide (150 mL, 1.0 M), warmed to 90 °C, and stirred during 1 h. Then, the mixture was cooled at room temperature, saturated with sodium chloride, extracted with dichloromethane (6×80 mL) and the combined organic layer dried over Na₂SO₄ and concentrated under reduced pressure to afford **3** in 96% yield after purification by flash chromatography (SiO₂, AcOEt, AcOEt–MeOH = 95:5).

4.2.1. (1'*R*)-(-)-1-(2'-Hydroxy-1'-phenylethyl)piperidin-**2-one 3.** White crystals. Mp: 113–115 °C. $[\alpha]_D = -80.0 (c \ 0.5, CH_2Cl_2)$. IR (KBr) 1615 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm, *J* Hz): 1.67 (m, 1H), 1.76 (m, 3H), 2.49 (m, 2H), 2.95 (AB, 4.4, 1H), 3.22 (AB, 3.6, 4.4, 1H), 3.79 (br, OH), 4.10 (AB, 5.2, 6.4, 2H), 5.85 (dd, 5.2, 5.6, 1H), 7.21–7.33 (m, 5H). ¹³C NMR (CDCl₃): 20.89, 23.11, 32.59, 43.43, 58.29, 61.33, 127.45, 127.58, 128.41, 136.82, 171.34.

4.3. Alkylation of compound 3

To a solution of **3** (0.29 g, 1.32 mmol) in THF (15 mL) under a nitrogen atmosphere at -78 °C was added HMPA (0.6 mL) and *sec*-BuLi (5.3 mmol). The mixture was stirred for 1 h and (*S*)-(+)-1-bromo-2-methylbutane (3.3 mmol) was added and the reaction mixture stirred for 2.5 h. Finally, the mixture was treated with a saturated solution of NH₄Cl (4.0 mL), extracted with ethyl acetate (3 × 20 mL), dried over Na₂SO₄, and finally, concentrated under reduced pressure. The crude mixture was purified by flash chromatography (SiO₂, AcOEt–petroleum ether 1:1, AcOEt–petroleum ether = 6:4) to give **4** in 90% yield.

4.3.1. (1'*R*,2"*S*,3*R*)-(-)-1-(2-Hydroxy-1'-phenylethyl)-3-(2"-methylbutyl)piperidin-2-one **4.** Colorless oil. $[\alpha]_{\rm D} = -17.3$ (*c* 2.25, CH₂Cl₂). IR (KBr) 1612 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm, *J* Hz): 0.86–0.91 (m, 6H), 1.18–1.48 (m, 5H), 1.64–1.81 (m, 3H), 1.83– 1.95 (m, 1H), 2.47 (m, 1H), 2.87 (AB, 5.1, 1H), 3.19 (AB, 5.4, 1H), 3.67 (br, OH), 4.05–4.17 (m, 2H), 5.80 (dd, 5.4, 5.7, 1H), 7.22–7.35 (m, 5H). ¹³C NMR

4.4. Reduction of compound 4

4.4.1. General procedure. To a solution of **4** (0.25 g, 0.85 mmol) in anhydrous THF (20 mL) under nitrogen atmosphere was added Red-Al (4.22 mmol, solution 65% in toluene) and stirred for 24 h at room temperature. Then, the mixture was cooled at 0 °C and quenched with saturated solution of NH₄Cl (2.0 mL). Then the reaction was filtered and the solution treated with Na₂SO₄. Finally, the solvent was removed in vacuo to give **5** in quantitative yield.

4.4.2. (2'*R*,2"*S*,3*R*)-(-)-2'-[3-(2'-Methylbutyl)piperidin-1-yl]-2'-phenylethanol **5.** Colorless oil. $[\alpha]_{\rm D} = -17.8$ (*c* 1.1, MeOH). IR (KBr) 1456, 704 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm, *J* Hz): 0.66–0.73 (m, 1H), 0.83–0.88 (m, 6H), 0.94 (m, 1H), 1.08–1.15 (m, 2H), 1.29 (m, 1H), 1.34–1.48 (m, 2H), 1.60–1.69 (m, 4H), 1.95 (dd, 10, 1H), 2.72 (dd, 9.6, 1H), 2.80 (m, 1H), 3.60 (AB, 5.2, 1H), 4.49 (AB, 5.2, 1H), 4.65 (AB, 9.6, 1H), 7.15–7.35 (m, 5H). ¹³C NMR (CDCl₃): 11.45, 19.40, 25.76, 29.97, 30.85, 31.18, 34.28, 41.47, 46.85, 59.78, 59.83, 70.13, 127.62, 127.90, 128.81, 135.21. HRMS (FAB): Calcd for C₁₈H₂₉NO: 275.2249. Found: 275.2220.

4.5. Catalytic hydrogenation of compound 5

To a solution of 5·HCl (0.31 g, 0.994 mmol) in methanol (5 mL) under a hydrogen atmosphere was added Pd/C 10% (0.045 g) and the mixture stirred for 96 h at room temperature. After, the reaction was filtered and the methanolic solution was evaporated under reduced pressure. The solid residue was crystallized in ethyl acetate to afford 6·HCl in 95 % yield.

4.5.1. (2'*S*,3*R*)-(+)-3-(2'-Methylbutyl)piperidine 6 HCl. White crystals. Mp: 171–173 °C. $[\alpha]_D = +12.7$ (*c* 0.92, MeOH). IR (KBr) 1585, 1449 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm, *J* Hz): 0.84–0.86 (m, 6H), 1.03–1.05 (m, 2H), 1.12–1.22 (m, 2H), 1.33 (m, 1H), 1.42 (m, 1H), 1.88–1.95 (m, 3H), 2.04 (m, 1H), 2.49 (m, 1H), 2.79 (m, 1H), 3.36 (m, 1H), 3.47 (m, 1H). ¹³C NMR (CDCl₃): 11.22, 19.01, 22.12, 28.84, 29.65, 30.70, 30.79, 40.65, 44.36, 49.56.

4.5.2. Crystal structure of 6 HCl. Colorless plate, $0.65 \times 0.60 \times 0.10 \text{ mm}^3$, $C_{10}\text{H}_{22}\text{ClN}$. Monoclinic, *C*2, a = 10.295(2), b = 7.334(2), c = 17.395(4) Å, Z = 4, $\rho_{\text{calcd}} = 0.987 \text{ g cm}^{-3}$. A set of 3339 reflections was collected at T = 296(1) K using Mo-K_a radiation ($\lambda = 0.71073$ Å, Bruker P4 diffractometer), corresponding to $2\theta_{\text{max}} = 55^\circ$. Raw data were corrected for absorption (Ψ -scans, transmission factors in the range 0.777–0.974) and 2971 independent reflections ($R_{\text{int}} = 0.0269$) were used for the refinement of 109 parameters, without restraints or constraints (SHELXTL 5.10 package). H atoms bonded to N1 were found on difference maps,

while the remaining H atoms were placed on idealized positions. All H atoms were refined using a riding model. Final *R* indices: $R_1 = 0.0677$ for 1924 reflections with $I > 2\sigma$ (*I*) and $wR_2 = 0.1883$ for all data. The correctness of the absolute configuration was checked on the basis of a refined Flack parameter: x = 0.18(12) for 1369 measured Friedel pairs. CCDC deposition number: 257396. Structure factors and raw files are available on request to authors.

4.6. Synthesis of (2'S,3R)-(+)-stenusine 8

To a solution of **6**·HCl (0.127 g, 0.663 mmol) in CHCl₃ (10 mL) at 0 °C was added triethylamine (0.5 mL) and the reaction mixture stirred for 30 min. Afterwards, ace-tyl chloride (0.2 mL) was added and the reaction mixture refluxed and stirred for 90 min. Then, this mixture was treated with a solution of NH₄Cl and extracted with ethyl ether (3×15 mL). The organic layer was dried with sodium sulfate, filtered and the solvent removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, petroleum ether–AcOEt = 40:60) to give 7 in 96 % yield. Reduction of 7 was carried out under the same conditions described in Section 4.4.1 to furnish stenusine **8** in quantitative yield.

4.6.1. (2'*S*,3*R*)-(+)-1-[3-(2'-Methylbutyl)piperidin-1-yl]ethanone 7. Colorless oil. $[\alpha]_D = +42.2$ (*c* 1.16, MeOH). IR (KBr) 1646, 1440 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm, *J* Hz): 0.81–0.89 (m, 6H), 0.96–1.08 (m, 2H), 1.09–1.23 (m, 2H), 1.33 (m, 1H), 1.40–1.47 (m, 2H), 1.52 (m, 1H), 1.69 (m, 1H), 1.86 (m, 1H), 2.08 (s, 3H), 2.23 (m, 1H), 2.63 (m, 1H), 2.71 (m, 1H), 2.98 (m, 1H). ¹³C NMR (CDCl₃): 11.24, 19.08, 21.44, 24.59, 29.74, 30.67, 30.89, 33.20, 40.37, 42.28, 48.00, 168.26. HRMS (FAB): Calcd for C₁₂H₂₃NO : 197.1780. Found: 197.1750.

4.6.2. (2'*S*,*3R*)-(+)-1-Ethyl-3-(2'-methylbutyl)piperidine **8.** Colorless oil. $[\alpha]_{D} = +67.4$ (*c* 0.76, EtOH). IR (KBr) 1585, 1449 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ (ppm, *J* Hz): 0.75 (m, 1 H), 0.83 (d, 6.2, 3H), 0.85 (t, 7.2, 7.6, 3H), 0.96 (m, 1H), 1.08 (t, 6.8, 7.6, 3H), 1.11– 1.16 (m, 2H), 1.28–1.35 (m, 2H), 1.50 (m, 1H), 1.58 (m, 1H), 1.65 (m, 1H), 1.74–1.80 (m, 2H), 2.32–2.43 (m, 2H), 2.83 (m, 1H), 2.91 (m, 1H). ¹³C NMR (CDCl₃): 11.42, 12.10, 19.34, 25.63, 30.02, 31.11, 31.20, 33.63, 41.92, 52.81, 53.86, 61.00.

Acknowledgements

We are grateful to CONACyT for financial support (project J35088-E) and BUAP (project VIEP II-110G02). A.C.C. thanks CONACyT for the doctoral scholarship (166996).

References

- 1. Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun. 1998, 633.
- (a) Wang, C.-L. J.; Wuonola, M. A. Org. Prep. Proced. Int. 1992, 24, 585; (b) Angle, S. R.; Breitenbucher, J. G. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1995; Vol. 16, pp 453–502; (c) Leclercq, S.; Daloze, D.; Braekman, J.-C. Org. Prep. Proced. Int. 1996, 28, 501; (d) Nadin, A. Contemp. Org. Synth. 1997, 4, 387.
- (a) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. *Tetrahedron* 2003, *59*, 2953–2989; (b) Micouin, L.; Diez, A.; Castells, J.; López, D.; Rubiralta, M. *Tetrahedron Lett.* 1995, *36*, 1693–1696; (c) Fréville, S.; Bonin, M.; Célérier, J.-P.; Husson, H.-P.; Lhommet, G.; Quirion, J.-C.; Thuy, V. M. *Tetrahedron* 1997, *53*, 8447– 8456; (d) Micouin, L.; Bonin, M.; Cherrier, M.-P.; Mazurier, A.; Tomas, A.; Quirion, J.-C.; Husson, H.-P. *Tetrahedron* 1996, *52*, 7719–7726; (e) Rodríguez, R.; Estiarte, M. A.; Diez, A.; Rubiralta, M.; Colell, A.; García-Ruíz, C.; Fernández-Checa, J. C. *Tetrahedron* 1996, *52*, 7727–7736; (f) Micouin, L.; Quirion, J.-C.; Husson, H.-P. *Tetrahedron Lett.* 1996, *37*, 849–852.
- Micouin, L.; Varea, T.; Riche, C.; Chiaroni, A.; Quirion, J.-C.; Husson, H.-P. *Tetrahedron Lett.* **1994**, *35*, 2529– 2532.
- Romo, D.; Meyers, A. I. Tertrahedron 1991, 47, 9503– 9569.
- Juárez, J.; Gnecco, D.; Galindo, A.; Marazano, C.; Enríquez, R. G.; Reynolds, W. F. *Tetrahedron: Asymmetry* 1997, *8*, 203–206.
- 7. Duffield, A. M.; Budzikiewicz, H.; Djerassi, C. J. Am. Chem. Soc. 1965, 87, 2926–2932.
- Acheson, R. M.; Ferris, M. J.; Sinclair, N. M. J. Chem. Soc., Perkin Trans. 1 1980, 579–585.
- 9. Lienard, P.; Varea, T.; Quirion, J.-C.; Husson, H.-P. Synlett 1994, 35, 143-144.
- Munchhof, M. J.; Meyers, A. I. J. Org. Chem. 1995, 60, 7084–7085.
- Enders, D.; Tiebes, J.; De Kimpe, N.; Keppens, M.; Stevens, C.; Smagghe, G.; Betz, O. J. Org. Chem. 1993, 58, 4881–4884.
- Poupon, E.; Kunesch, N.; Husson, H.-P. Angew. Chem., Int. Ed. 2000, 39, 1493–1495, and references cited therein.